1.Zhou, H. Y., Yu, Y., Wang, C., Zhang, S., Gao, Y., Pan, J., Shao, J., Lu, G., Zhang, K., & Li, W. (2023). A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics. Nature Biomedical Engineering, 7, 743-755.
2.Zhou, H. Y., Chen, X., Zhang, Y., Luo, R., Wang, L., & Yu, Y.Y. (2021). Generalized radiograph representation learning via cross-supervision between images and free-text radiology reports. Nature Machine Intelligence, 4, 32 - 40.
3.Zhou, H. Y., Lu, C., Chen, C., Yang, S., & Yu, Y. (2023). A Unified Visual Information Preservation Framework for Self-supervised Pre-Training in Medical Image Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 8020-8035.
4.Zhou, H. Y., Lian, C., Wang, L., & Yu, Y. Advancing Radiograph Representation Learning with Masked Record Modeling. In The Eleventh International Conference on Learning Representations.
5.Zhou, H. Y., Fu, Y., Zhang, Z., Cheng, B., & Yu, Y. (2023). Protein representation learning via knowledge enhanced primary structure reasoning. In The Eleventh international conference on learning representations.
6.Zhou, H. Y., Lu, C., Yang, S., Han, X., & Yu, Y. (2021). Preservational learning improves self-supervised medical image models by reconstructing diverse contexts. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 3499-3509).
7.Johri, S., Jeong, J., Tran, B.A., Schlessinger, D.I., Wongvibulsin, S., Barnes, L., Zhou, H. Y., Cai, Z.R., Van Allen, E.M., Kim, D.A., Daneshjou, R., & Rajpurkar, P. (2025). An evaluation framework for clinical use of large language models in patient interaction tasks. Nature Medicine, 31(1), 77-86.
8.Wang, J., Wang, K., Yu, Y., Lu, Y., Xiao, W., Sun, Z., Liu, F., Zou, Z., Gao, Y., Yang, L., Zhou, H. Y., Miao, H., Zhao, W., Huang, L., Zeng, L., Guo, R., Chong, I., Deng, B., Cheng, L., Chen, X., Luo, J., Zhu, M., Baptista‐Hon, D.T., Monteiro, O., Li, M., Ke, Y., Li, J., Zeng, S., Guan, T., Zeng, J., Xue, K., Oermann, E.K., Luo, H., Yin, Y., Zhang, K., & Qu, J. (2024). Self-improving generative foundation model for synthetic medical image generation and clinical applications. Nature Medicine, 31(2), 609-617.
9.Huang, W., Li, C., Zhou, H. Y., Yang, H., Liu, J., Liang, Y., ... & Wang, S. (2024). Enhancing representation in radiography-reports foundation model: A granular alignment algorithm using masked contrastive learning. Nature Communications, 15(1), 7620.
10.Gao, Y., Ventura-Diaz, S., Wang, X., He, M., Xu, Z., Weir, A., Zhou, H. Y., Zhang, T., Van Duijnhoven, F., Han, L., Li, X., D'Angelo, A., Longo, V., Liu, Z., Teuwen, J., Kok, M., Beets-Tan, R., Horlings, H.M., Tan, T., & Mann, R. (2024). An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer. Nature Communications, 15(1), 9613.